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Image representation matters!
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Simply resampling the image to a different representation significantly improves 
accuracy for predictions tasks with convolutional neural networks.
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Why does image representation matter?
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Carl Friedrich Gauss

Gauss’s Theorema Egregium:
Gaussian curvature of a surface is invariant under local 
isometry

Spherical Earth Model A Distorted Map Projection

Far reaching implications, but particularly relevant to 
cartography: All planar projections of a sphere have distortions
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All 360° image representations are distorted
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Cubemap
Gnomonic (rectilinear) projection

- Popular graphics format
- Projects a sphere onto the faces of 

an inscribing cube
- Distorts most severely in corners 

of faces

Equirectangular image
Equirectangular  projection

- Simple transformation from sphere 
to projection

- Indexes image grid with spherical 
coordinates

- Distorts most severely near poles
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So what?
Why do we care about spherical distortion when using CNNs?
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Distortion and convolution
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1D Discrete Convolution

Separating the sampling operation 
from the weighted summation
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Distortion and convolution
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Sampling represented by the Dirac delta function

Dirac delta function: x
0

1

Alternatively:
(in continuous form)

x
0

(area = 1)
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Distortion and convolution
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Spherical distortion violates this assumption
E.g. Pixel redundancy at poles in equirectangular image

Adds unexpected scaling bias

Key observation: Translational equivariance implicitly assumes 
all sampled data contribute equal information
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How can we fix this?
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Let’s look at what cartographers do...
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The imperfect map
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Cropped from https://xkcd.com/977/

https://xkcd.com/977/
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Analyzing spherical distortion
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Analyzing spherical distortion
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Tissot figure from Snyder, John Parr. Map projections--A working manual. Vol. 1395. US Government Printing Office, 1987.

Tissot’s Indicatrix: An infinitely small circle on the Earth (A) 
appears as an ellipse on a typical map (B)

Recall modeling convolution’s 
sampling function as the limit of 

a Gaussian as 𝜎 → 0

2D Gaussian as 𝜎 → 0
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Analyzing spherical distortion
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Back to spherical images
Let’s take another look at those two common spherical image formats...
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Distortion in 360° image representations
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Cubemap
Gnomonic (rectilinear) projection

- Popular graphics format
- Projects a sphere onto the faces of 

an inscribing cube
- Distorts most severely in corners 

of faces

Equirectangular image
Equirectangular  projection

- Simple transformation from sphere 
to projection

- Indexes image grid with spherical 
coordinates

- Distorts most severely near poles
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Quick summary of spherical distortion
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1. Mathematically impossible to remove

2. Disrupts translational equivariance critical to CNN function

3. Spreads and deforms content (information) in images
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Two solutions
Accumulate deformed content
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Pros:
- Works with any image representation

Cons:
- Very inefficient (possibly >100’s of pixels per 

sample)
- GPU implementation difficult

Use a compromise projection

Pros:
- Efficient sampling (just a single pixel)
- Can use standard grid convolution with limited 

modifications to implementation
Cons:
- Some distortion remains

Example accumulation kernel Planar approximation to sphere
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ISEA and the icosphere

Our compromise projection: Icosahedral Snyder equal area (ISEA) projection [3]

Projects image onto surface of icosphere, a recursively subdivided regular 
icosahedron
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One of least distorted compromise projections [2]
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ISEA and the icosphere
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Evaluation
Semantic segmentation improves 12.6% simply due to change of image 
representation
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Semantic segmentation
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Train a network with each representation using SUMO dataset [5]

Simple encoder-decoder
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Results
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ISEA projection gives a 12.6% improvement over 
state-of-the-art methods that use 

equirectangular images!

Evaluate mIOU on 15 most frequent semantic classes
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Other applications and future work

23

Not limited to CNNs

Normalized correlation metrics suffer from same issues with spherical 
images (e.g. stereo depth)

Image filtering uses convolution too -- 360° panos are a growing social 
media commodity (e.g. Instagram filters)

Need to build large-scale realistic spherical image dataset
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Thank you!
Any questions?

For more conversation, come to our poster today or contact Marc Eder at 
meder@cs.unc.edu.
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mailto:meder@cs.unc.edu
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