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1 Introduction

We introduce the Scene Understanding and Modeling (SUMO) challenge with the goal of studying
and evaluating the performance of RGBD-to-3D semantic scene modeling algorithms. Challenge
participants are tasked to derive a complete, instance-based 3D representation of a scene given an
RGB-D representation. The complete representation should highlight geometric instances, appear-
ance, and semantics. This document describes the details of the challenge tasks, including scene
elements of interest, data format, and metrics.

2 Data Representation and Submission Format

In the SUMO challenge, 3D scenes are a modeled by a collection of instances, known as elements
hereafter. Each element models one object in the scene (e.g., a wall, the floor, or a chair) in one
of three increasingly descriptive representations: oriented bounding box, oriented voxel grid, or
oriented surface mesh. All aspects of a scene are modeled using the same representation. Each
representation is evaluated with its own set of metrics described in Section 3.

Each element has its own local coordinate frame. The element’s geometric description (bounding
box, voxel grid, or mesh) is represented in this coordinate frame. The element’s pose is a rigid
body transform (translation t and 3× 3 rotation matrix R) mapping points from the element’s local
coordinate frame to the scene coordinate frame. The ground truth and training data for the SUMO
challenge is provided in the scene coordinate frame, which is right handed with the +Y axis approx-
imately up and its origin coincident with the camera used to obtain the data.

The origin of an element’s local coordinate frame is the center of the element’s bounding box, and
the axes are oriented so that +Y is “up,” +Z is the “front,” and +X is defined according to a right-
handed coordinate system. The direction of “up” and “front” is defined on a per-category basis. (see
Appendix A).

Some objects do not have an intuitive “up” or “front” direction. For example, a rectangular table
has a 2-fold rotational symmetry about the Y axis. For simplicity, we only support 2-fold (e.g.,
rectangular table), 4-fold (e.g., square table), circular (e.g., plate), or spherical (e.g., basketball)
symmetries and only about the major axes (X, Y, or Z). Furthermore, only a subset of the possible
symmetries may be used in conjunction with one another: 2-fold + 2-fold + 2-fold (e.g., rectangular
box), 4-fold + 4-fold + 4-fold (e.g., cube).

Mathematically, an element e is a tuple (c, P,S,X ), where c is the category of the element, P is
the pose, S is the shape and appearance, and X is the symmetry specification. In pseudo-code an
element is represented as

SymmetryType = twoFold | f o u r F o l d | c i r c u l a r | s p h e r i c a l

ElementBase {
S t r i n g c a t e g o r y
Pose3 pose {

Rot3 r o t a t i o n
Vec3 t r a n s l a t i o n



}
Symmetr ies {

SymmetryType xSymmetry
SymmetryType ySymmetry
SymmetryType zSymmetry

}
f l o a t d e t e c t i o n S c o r e

}

Next, we describe the three options for shape and appearance representation in submissions.

2.1 Oriented Bounding Boxes

Oriented Bounding Boxes (OBBs) offer the coarsest representation of a scene. An OBB augments
the basic element with a bounding box with bounds min corner, andmax corner. The box is rep-
resented in the element’s local coordinate frame, not in the scene coordinate frame. In pseudocode,

BoundingBox {
f l o a t minCorner [ 3 ]
f l o a t maxCorner [ 3 ]

}

Or ien t edBound ingBoxObjec t {
ElementBase e l emen tBase
BoundingBox boundingBox

}

Note that the bounding box may extend beyond the observed data corresponding to an object, as
would happen, for example, when a chair is partially occluded. The box indicates the extent of the
chair if it were fully observed.

2.2 Oriented Voxel Grids

Oriented Voxel Grids provide an intermediate level of description for a scene. Each element includes
the base element and oriented bounding box as defined above, along with a voxelized 3D volume
with a given voxel size and a matrix of voxel centers with 3D location (x, y, z) and color (RGB).
The voxel grid is represented in the element’s local coordinate frame. In pseudocode,

O r i e n t e d V o x e l G r i d O b j e c t {
ElementBase e l emen tBase
BoundingBox obb
f l o a t v o x e l S i z e
f l o a t v o x e l C e n t e r s [N, 6 ]

2.3 Oriented Surface Meshes

Oriented surface meshes allow for the most precise representation of a scene. Each element is rep-
resented as a base element and oriented bounding box as defined above, combined with a textured
triangle surface mesh. A mesh is composed of a set of 3D vertices, face indices, UV texture coordi-
nates, and a texture map.

O r i e n t e d M e s h O b j e c t {
ElementBase e l emen tBase
Or ien tedBoundingBox obb
f l o a t v e r t i c e s [ 3 ,N] / / x , y , z c o o r d i n a t e s
f l o a t i n d i c e s [3*M] / / i n d i c e s o f t r i a n g l e c o r n e r s
f l o a t t e x t u r e C o o r d s [ 2 , 3 *M] / / u , v per−v e r t e x
f l o a t b a s e C o l o r [W, H, 3 ] / / RGB t e x t u r e map
}
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2.4 Submission Format

Submissions for the SUMO challenge should be provided in zip file format. The zip file
should be named <room_name.zip> (e.g., living_room.zip) and should contain a single folder
<room_name> (e.g., living_room). The submission folder should contain an xml file named
<room_name>.xml (e.g., living_room.xml). The xml lists the elements in the scene, and, for
each element, provides its category, bounding box, and pose. Each element’s voxel grid or mesh is
provided in a separate file for efficiency. The format for the xml is given in Appendix C. Addition-
ally, an xsd specification for the format is provided as part of the SUMO GitHub repository.

Oriented bounding boxes (OBB) format: The scene is described by a single xml file:

l i v i n g r o o m
> l i v i n g r o o m . xml

Oriented voxels format: In addition to the xml file used in the OBB format, each element’s voxel
centers are saved as an (NX6) matrix in hdf5 file format [4]. The base name for each file should
match the <id> tag for the corresponding element within the xml file.

l i v i n g r o o m
> l i v i n g r o o m . xml
> b o t t l e 1 . h5
> b o t t l e 2 . h5
> c h a i r 1 . h5
> w a l l 1 . h5
> f l o o r 2 . h5

Oriented meshes format: In addition to the xml file used in the OBB format, each element’s mesh
reperesnation is saved in glb format [3]. The base name for each file should match the <id> tag for
the corresponding element within the xml file.

l i v i n g r o o m
> l i v i n g r o o m . xml
> b o t t l e 1 . g l b
> b o t t l e 2 . g l b
> c h a i r 1 . g l b
> w a l l 1 . g l b
> f l o o r 2 . g l b

3 Evaluation Metrics

SUMO submissions are evaluated according to four categories of metrics: Geometry, Appearance,
Semantics and Perceptual, which we refer to as the GASP methodology. The perceptual evaluation
is a novel evaluation metric derived from user studies to emphasize the aspects of modeling that are
more perceptually relevant to people, and the other metrics are based on best practices from state-
of-the-art recognition and modeling algorithms.

A submission is evaluated using the following process. First, a data-association process matches
ground-truth scene elements to the submission’s scene elements (Section 3.1). The process identifies
correct matches as well as false negatives (missed elements) and false positives (extra elements). The
resulting association is then evaluated using metrics targeting geometry, appearance, semantics, and
perceptual features (Sections 3.2 through 3.5). The methods are summarized in Figure 1.

3.1 Scene Element Data Association

To associate submitted scene elements to ground-truth elements, we apply a greedy algorithm similar
to the method used in the COCO and PASCAL VOC challenges [2]. We define a similarity measure
S for comparing the shape of detected elements to their ground-truth counterparts in each of the
data representations: bounding boxes (Sbb), voxels (Svox), and meshes (Smesh). For a given scene,
detections with similarity exceeding a threshold τi are sorted in descending order of detection score,
and each is matched with the unmatched ground-truth element with which it has the highest S.
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Track

Metric Bounding Boxes Voxels Meshes

Data Association greedy shape similarity

Geometry

Shape category agnostic 
mAP

category agnostic 
mAP

category agnostic 
mAP

Pose • average geodesic distance (rotation)
• average translation error (translation)

Appearance N/A • RMS color distance 
(RMSCD)

• Voxel RMSSSD

• RMS color distance 
(RMSCD)

• Surface point 
RMSSSD

Semantics mean Average 
Precision (mAP)

mean Average 
Precision (mAP)

mean Average 
Precision (mAP)

Perceptual average of weighted Gaussians

Figure 1: Summary of main algorithms and metrics for the SUMO challenge

Intersection

Union

Figure 2: Bounding Box Intersection and Union

For the geometric and appearance evaluation metrics, this matching is performed independently of
element category, whereas for semantic evaluation metrics, the matching is performed on a per-
category basis. Following the COCO challenge methodology [5, 1], our metrics are averaged across
multiple similarity thresholds, τ = {0.5, 0.55, 0.6, ....0.95}, which rewards methods with better
localization. Data association produces a set of matches Mi = m1,m2, . . . ,mJ , where mj =
(eDET
j , eGT

j ) is a pair of matched elements (detection, ground truth).

Bounding Box Shape Similarity. To compare the similarity (Sbb) between bounding boxes m and
n, we use the conventional bounding box intersection-over-union (IoU):

Sbb(m,n) =
Vovmn

Vm + Vn − Vovmn

, (1)

where Vovmn is the volume of the intersection between m and n, and Vm and Vn are the volumes of
m and n respectively (Figure 2).

Voxel Shape Similarity. To compare the similarity (Svox) between voxelized elementsm and n, we
define a voxel intersection-over-union metric as the ratio of overlapping occupied voxels to the total
number of voxels. An overlapping voxel in m is a voxel whose center is within a small distance
threshold of at least one other voxel center in n. The threshold is set to twice the voxel size and
accounts for quantization effects.

Svox(m,n) =
|Vcmn

|
|Vcm |+ |Vcn |

, (2)
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Figure 3: Voxel Intersection and Union

Figure 4: Mesh Intersection and Union

where Vcmn is the set of overlapping voxels betweenm and n, and Vcm and Vcn are the voxel centers
of m and n respectively (Figure 3).

Surface Mesh Shape Similarity. To compare the similarity (Smesh) between surface meshes m
and n we first extract a uniform random sample of surface points on each mesh. We define a mesh
intersection-over-union metric as the ratio of overlapping surface points to the total number of sur-
face points. An overlapping point in m is a sampled point that is within a small distance threshold
of at least one sampled point in n.

Smesh(m,n) =
|Bmn|

|Bm|+ |Bn|
, (3)

AboveBmn is the set of overlapping points betweenm and n, andBm andBn are the set of sampled
points from m and n respectively (Figure 4). Note that for uniformly sampled meshes, the number
of points on a given surface is approximately proportional to the surface area.

3.2 Geometric Evaluation

Geometry is evaluated using two primary metrics: a shape similarity score, which is the category-
agnostic average precision (AP), and a pose error, which consists of a translation error and a
geodesic distance. In addition, for voxel and mesh representations, we compute a Root Mean
Squared Symmetric Surface Distance (RMSSSD), which bears similarity with the Chamfer distance
used to compare two point clouds [6].

Shape similarity: the category-agnostic mean average precision (mAP). The category-agnostic
mAP is an indication of the fraction of elements for which a sufficiently geometrically similar shape
was found as a match in a submission irrespective of object category. Average precision (AP) is
computed similarly to the COCO and PASCAL VOC challenges [2]. Specifically, for a given value
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of τ , the precision-recall (P-R) curve is computed using the detection scores of all detections in all
scenes, averaging the precision at 11 points on the P-R curve:

AP (τi) =
1

11

∑
r∈{0,0.1,...,1}

pinterp(r, τi). (4)

Above pinterp(r, τi) is the interpolated precision at recall level r for similarity threshold τi,

pinterp(r, τi) = max
r̃:r̃≥r

p(r̃, taui), (5)

where p(r̃, taui) is the measured precision at recall r̃ for similarity threshold τi.

The mAP is computed by averaging the AP over all shape similarity thresholds τ =
{0.5, 0.55, . . . , 0.95}.

mAP =
1

|τ |

|τ |∑
i=1

AP (τi) (6)

Pose error: rotation. To evaluate rotation error across matched pairs, we compute the average
geodesic distance between the detected and ground truth rotations [7]:

∆R =
1

|τ |

|τ |∑
i=1

1

|Mi|

|Mi|∑
j=1

∆r(RGT
i,j , R

DET
i,j ) (7)

where RGT
i,j and RDET

i,j are the rotation matrices of eGT
j and eDET

j from Mi, and ∆r(Ra, Rb) is the
geodesic distance between rotations Ra and Rb:

∆r(Ra, Rb) ≡
1√
2
|| log(RTaRb)||F , (8)

Rotational symmetries are handled as follows: For 2-fold and 4-fold symmetries, the ground truth
pose is rotated by each of the possible values, and the minimum rotation error is reported. For
cylindrical symmetry, the error is computed on a reduced dimensionality rotation matrix, with the
symmetry axis eliminated. For spherical symmetry, rotation error is zero.

Pose error: translation. To evaluate translation error across matched pairs, we compute the average
translation error as

∆T =
1

|τ |

|τ |∑
i=1

1

|Mi|

|Mi|∑
j=1

∆t(tGT
i,j , t

DET
i,j ), (9)

where tGT
i,j and tDET

i,j are the translation vectors of eGT
j and eDET

j from Mi, and ∆t(ta, tb) is the
translation error:

∆t(ta, tb) = ||ta − tb|| (10)

Average Root Mean Squared Symmetric Surface Distance (RMSSSD). For voxel and mesh rep-
resentations, we follow [8] to compare matched scene elements by computing a measure of the
distance from the points (or voxel centers) of one element to the points (or voxel centers) of the
other. We average this value across matches and thresholds to obtain the average RMSD measure as
follows:

RMSD =
1

|τ |

|τ |∑
i=1

1

|Mi|

|Mi|∑
j=1

∆d(j, jmi) (11)

where,

∆d(j, jmi) =
1√

|Bj |+ |Bjmi
|

√ ∑
x∈Bj

d2(x,Bjmi) +
∑

y∈Bjmi

d2(y,Bj) (12)

where ∆d is the RMS error, Bj is the set of points (or voxel centers) of matched ground-truth
element j, Bjmi is the set of points (or voxel centers) for the scene element matched with j, and
d(a,B) is the distance between point a and set B – if b is the nearest neighbor of a in set B, then
d(a,B) = ||a− b||.
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3.3 Appearance evaluation

Average Root Mean Squared Symmetric Surface Color distance (RMSCD). For voxel and mesh
representations, we use a variant of the RMSD measure in which we compare RGB color instead of
point location as follows:

RMSCD =
1

|τ |

|τ |∑
i=1

1

|Mi|

|Mi|∑
j=1

∆dRGB(j, jmi) (13)

where,

∆dRGB(j, jmi) =
1√

|Bj |+ |Bjmi
|

√ ∑
x∈Bj

d2RGB(x,Bjmi) +
∑

y∈Bjmi

d2RGB(y,Bj) (14)

where ∆dRGB is the color RMS error, Bj is the set of points (or voxel centers) of matched ground-
truth element j, Bjmi

is the set of points (or voxel centers) for the scene element matched with j at
threshold i. If b is the nearest neighbor of a in set B, then dRGB(a,B) = ||aRGB − bRGB || where
aRGB is the color vector of point a.

3.4 Semantics evaluation

We evaluate semantics using mean Average Precision (mAP) which we obtain by averaging preci-
sion across categories and across shape similarity threshold using the same method as in the COCO
challenge [5].

AP (τi, Cj) =
1

11

∑
r∈{0,0.1,...,1}

pτi,Cj (r), (15)

where pτi,Cj
(r) is the precision at recall level r for class j and similarity threshold i. The mAP is

computed by averaging the AP over all shape similarity thresholds τ = {0.5, 0.55, 0.6, ....0.95} and
object classes Cj .

mAP =
1

|τ |
1

|C|

|τ |∑
i=1

∑
c∈C

AP (τi, c) (16)

where C is the set of categories and AP (τi, c) is the category-specific average precision, which is
computed as in Equation 4, except only using detections and ground truth elements for category c.

3.5 Perceptual Evaluation

Perceptual evaluation is performed based on the results of a series of user studies performed over
the course of the last year, in which participants experienced sets of real and virtual rooms, and were
given the opportunity to identify which characteristics of the room were most noticeably different
and also to manipulate the rooms in such a way as to make them feel most real. The designs and
analyses of these experiments will be summarized in a paper that will be made available on arXiv.

Perceptual evaluation depends heavily on the results of the scene elements association discussed in
detail in Section 3.1. Once objects are associated, we assign a score (and/or a penalty) to each object
based on its perceptual importance as observed in the experiments. These scores are computed as
the result of a weighted Gaussian

P (x) = ae−(x−µ)
2/2σ2

(17)

where the weight a is driven by the relative importance of a given object property (i.e., the overall
scale of the room was found to be more important to participants than the position of an object
within it), the mean µ can be varied to enable asymmetric behavior (i.e. an object floating above
a surface is generally more perceptually obvious than one sinking into it), and the variance σ can
be varied to allow more or less tolerance with respect to the specific property (i.e., while room
scale was perceived to be most important, participants were willing to accept approximately 20%
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error; we account for this in the scoring with a “wider” Gaussian, essentially giving full—or close
to full—credit, even for properties that may exhibit some error).

The specific properties of the room (or of individual objects in it) that are addressed by the perceptual
evaluation metric are: room scale, presence or absence of an individual object (weighted by object
size; larger objects are more perceptually important to participants), scale of an individual object
(relative to the scale of the room), scale of an individual object (relative to the “true” scale of that
object), horizontal translation of an individual object compared to its true value (whether the object
is correctly located on the surface), and vertical elevation of an object compared to its true value
(whether the object is actually on the surface, as opposed to sinking into it or floating above it).
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Appendices
Appendix A Object Categories

The categories for the SUMO challenge elements are a subset of those in the SUN-CG fine-grained
class list. Three types of categories have been removed:

1. animate objects (e.g., human, pet)

2. categories with than 100 instances in the training data

3. ”unknown” category. Instances in the unknown category are primarily box-shaped objects,
which may be used to represent instances from a variety of categories. In the underly-
ing annotations, these objects are unlabeled, and in this challenge, those objects are not
evaluated.

Included Categories
air conditioner cutting board kitchen set single bed

arch desk knife rack sink
armchair dining table laptop soap dispenser

atm dishwasher loudspeaker sofa
baby bed door magazines stairs

basketball hoop double bed microwave stand
bathtub dresser mirror stationary container

beer dressing table motorcycle stereo set
bench chair dryer office chair switch

book fence ottoman table and chair
books fireplace outdoor lamp table lamp

bookshelf fish tank outdoor seating telephone
bottle fishbowl pan television

bunker bed floor partition toilet
candle floor lamp pedestal fan towel hanger

car food processor person towel rack
cart food tray pet toy

ceiling fruit bowl piano trash can
ceiling fan game table picture frame trinket

chair garage door pillow tv stand
chair set glass place setting umbrella

chandelier goal post plant utensil holder
chessboard grill plates vacuum cleaner

clock gym equipment playstation vase
cloth hanger pool wall

coffee kettle hanging kitchen cabinet range hood wall lamp
coffee machine heater range oven wardrobe cabinet

coffee table household appliance refrigerator washer
column iron roof water dispenser

computer ironing board rug whiteboard
containers jug shelving window

cup kettle shoes cabinet workplace
curtain kitchen cabinet shower xbox
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Excluded Categories
accordion food microphone surveillance camera
amplifier fork mortar and pestle table
bicycle gramophone outdoor spring teapot
bread guitar poker chips theremin
cake hair dryer range hood with cabinet toaster

camera headphones on stand range oven with hood toilet paper
cellphone headstone rifle on wall toilet plunger

coffin helmet safe toiletries
container ipad shoes tricycle

cooker keyboard slot machine tripod
decoration knife slot machine and chair unknown
drinkbar ladder soap dish weight scale
drumset lawn mower spoon wood board
empty mailbox storage bench

In order to allow consistent modeling across disparate object instances within the same category,
each object is represented in is canonical pose, with +Y being up and +Z being the front. The
following rules were used in assigning canonical pose for each object:

• Objects with an intuitive front (e.g., chair, bookshelf, toilet). The front is the direction
from which a normal person would typically approach the object. Typically, the back of an
object would be placed against a wall.

• Objects with no intuitive front (e.g., coffee cup, blender). The front is chosen arbitrarily.
Symmetry about the Y axis is set to twoFold, fourFold, or cylindrical.

• Walls. Walls are assumed to be vertical. The front is perpendicular to the largest vertical
plane. Top (+Y) is up.

• Floors and ceilings. Floors and ceilings may be horizontal or angled. The front is perpen-
dicular to the largest surface. Top is arbitrary, but perpendicular to the front. Symmetry
about the Y axis is set to cylindrical.

The annotations may not agree with everyone’s definition of ”front,” but our goal is that every object
within a category is consistently labeled with the same canonical pose with respect to this somewhat
arbitrary definition.

Appendix B Symmetry Annotation

The symmetry annotations do not adhere to the strict sense of the definition of symmetry. Symmetry
is used to indicate ambiguities in the definition of top or front. We employ the symmetry specifica-
tion in the evaluation metrics to allow freedom in the pose rotation without increasing error. Here
are a few illustrative examples:

• blender. The front of a blender is not obvious, but is is primarily square-shaped with respect
to the Y axis. Therefore, we set the Y axis symmetry to 4-fold.

• coffee cup. Cups have no obvious front but are primarily cylindrical. Therefore, we set the
Y axis symmetry to cylindrical.

• rectangular table. For rectangular furniture like tables, we label the long side as the front
and specify a 2-fold symmetry about the Y axis.

• bookshelves. Some furniture would look equally correct if posed upside down. For these
objects, we specified a 2-fold symmetry about the Z axis.

• borderline cases. For objects where it is not clear whether a particular type of symmetry
exists along a given axis, the more liberal label is applied. For example, a 6-sided mirror
would have a rotational symmetry about the Z axis.
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Appendix C Scene File Format (XML)

Below, is a simple example of the xml portion of a SUMO scene. The file consists of a header section
(version and categories tags) and a list of elements. Each element contains an id, category, detection
score, bounds, pose, and symmetry specification. The detection score is only meaningful for detec-
tion results (i.e., your output scenes), but ground truth scenes also contain the detectionScore field,
and it is set to -1.

<?xml version="1.0" encoding="UTF-8"?>
<scene xmlns="https://www.sumo-challenge.org">

<version>2.0</version>

<categories>
<id>fb_categories_v1_0</id>
<url>https://sumochallenge.org/en/categories-1_0.json</url>

</categories>

<elements>
<element>

<id>1</id>
<category>floor</category>
<detectionScore>0.8</detectionScore>
<bounds>

<corner1> 0, 0, 0 </corner1>
<corner2> 1.0, 1.0, 1.0 </corner2>

</bounds>
<pose>

<translation>
-131.596614,
-39.9279011,
92.1260558

</translation>
<rotation>

<c1> 1.0, 0, 0 </c1>
<c2> 0, 1.0, 0 </c2>
<c3> 0, 0, 1.0 </c3>

</rotation>
</pose>
<symmetry>

<x>twoFold</x>
<y>twoFold</y>
<z>fourFold</z>

</symmetry>
</element>

<element>
<id>2</id>
<category>bookshelf</category>
<detectionScore>0.4</detectionScore>
<bounds>

<corner1> 0, 0, 0 </corner1>
<corner2> 1.0, 1.0, 1.0 </corner2>

</bounds>
<pose>

<translation>
-131.596614,
-39.9279011,
92.1260558

</translation>
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<rotation>
<c1> 1.0, 0, 0 </c1>
<c2> 0, 1.0, 0 </c2>
<c3> 0, 0, 1.0 </c3>

</rotation>
</pose>
<symmetry>

<x>none</x>
<y>none</y>
<z>none</z>

</symmetry>
</element>

<element>
<id>3</id>
<category>wall_art</category>
<detectionScore>0.2</detectionScore>
<bounds>

<corner1> 0, 0, 0 </corner1>
<corner2> 1.0, 1.0, 1.0 </corner2>

</bounds>
<pose>

<translation>
-131.596614,
-39.9279011,
92.1260558

</translation>
<rotation>

<c1> 1.0, 0, 0 </c1>
<c2> 0, 1.0, 0 </c2>
<c3> 0, 0, 1.0 </c3>

</rotation>
<symmetry>

<x>none</x>
<y>none</y>
<z>none</z>

</symmetry>
</pose>

</object>
</element>

</scene>
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